Перевод: с русского на все языки

со всех языков на русский

что обеспечивает

  • 1 что обеспечивает

    Что обеспечивает-- The light passes into a central chamber through two diffusing glasses (23), which ensures identical illuminating conditions for both sample and reference fields.

    Русско-английский научно-технический словарь переводчика > что обеспечивает

  • 2 что обеспечивает

    • což zajišťuje

    Русско-чешский словарь > что обеспечивает

  • 3 что обеспечивает ему

    • což zajišťuje jemu

    Русско-чешский словарь > что обеспечивает ему

  • 4 каскадный кабель(используется для соединения первого и последнего устройства , что обеспечивает отсутствие единой точки отказа)

    Electrical engineering: Cascading Cable

    Универсальный русско-английский словарь > каскадный кабель(используется для соединения первого и последнего устройства , что обеспечивает отсутствие единой точки отказа)

  • 5 система многоканальной записи звука со сжатием меньшим чем в Dolby Digital, что обеспечивает лучшее по сравнению с ней качество звука

    Hi-Fi. Digital Theater System

    Универсальный русско-английский словарь > система многоканальной записи звука со сжатием меньшим чем в Dolby Digital, что обеспечивает лучшее по сравнению с ней качество звука

  • 6 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 7 непрерывная эпидуральная анестезия

    Anesthesiology: fractional epidural anesthesia (непрерывное введение анестетика в эпидуральное пространство с помощью прикроватного шприцевого насоса, что обеспечивает постоянное обезболивание), continuous epidural anesthesia (непрерывное введение анестетика в эпидуральное пространство с помощью прикроватного шприцевого насоса, что обеспечивает постоянное обезболивание)

    Универсальный русско-английский словарь > непрерывная эпидуральная анестезия

  • 8 продлённая спинальная анестезия

    Medicine: continuous spinal anesthesia (непрерывное введение анестетика в субарахноидальное пространство, что обеспечивает постоянное обезболивание в течение операции), fractional spinal anesthesia (непрерывное введение анестетика в субарахноидальное пространство, что обеспечивает постоянное обезболивание в течение операции)

    Универсальный русско-английский словарь > продлённая спинальная анестезия

  • 9 колодец нагревательный

    1. soaking pit

     

    колодец нагревательный
    Регенеративная или рекуперативная печь, расположенная ниже уровня пола цеха, теплообменник периодического действия с верхней загрузкой-выгрузкой для нагрева стальных слитков большого сечения (толщиной > 400 мм) перед прокаткой на обжимном стане. Раб. пространство одной ячейки к. н. имеет форму параллелепипеда с размерами: ширина (сторона квадрата) 2,5—5,0 м; длина 3—10 м; глубина 3,0-4,5 м. Регенеративный к. н. работает реверсивно, с боковым факелом, что не обеспечивает равномерного обогрева всех слитков в ячейке. В рекуперативном к. н. создают вертик. факел в центре пода или горизонт. факел со скоростью 10—25 м/с в верхней части ячейки, что обеспечивает высокое кач-во нагрева. Уд. произв-ть (на ед. площади пода) н. к. составляет 0,6—1,2 т/(м2•ч); годовая произв-ть одной группы (2—4 ячейки) — 0,25—0,35 млн. т/год. Угар металла до 1 %. В электрич. к. н. с криптоловыми нагревателями в виде карборундового желоба с нефтяным коксиком (15—50 мм) удается снизить угар до 0,2—0,3 %.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > колодец нагревательный

  • 10 короткозамыкатель

    1. shorting device
    2. short-circuiting switch
    3. short-circuiting line switch
    4. short-circuiter
    5. short circuitor
    6. short
    7. ES with short-circuit making capacity
    8. earthing switch with short-circuit making capacity

     

    короткозамыкатель
    Коммутационный электрический аппарат, предназначенный для создания искусственного короткого замыкания в электрической цепи.
    [ ГОСТ 17703-72]
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    короткозамыкатель
    Короткозамыкатель служит для создания КЗ в цепи высокого напряжения. По конструкции он сходен с заземляющим устройством разъединителя, но снабжен быстродействующим приводом.
    ... При повреждении в РУ и токе КЗ, недостаточном для работы защиты на отправном конце питающей линии, короткозамыкатель заземляет линию. При этом увеличивается ток КЗ, что обеспечивает надежное срабатывание защиты и отключение линии с отправного конца выключателем. После этого отключаются выключатель поврежденной трансформаторной группы на стороне низшего напряжения и затем отделитель этой же группы на стороне высшего напряжения. Таким образом поврежденная трансформаторная группа оказывается изолированной от сети, что обеспечивает возможность повторного включения выключателя на отправном конце питающей линии и восстановление питания потребителей поврежденной трансформаторной группы в результате их подключения междушинным выключателем к неповрежденной трансформаторной группе.
    Короткозамыкатели и отделители обладают большим быстродействием для ограничения длительности аварийного режима в системе.
    [А. И. Афанасьев и др. Электрические аппараты высокого напряжения. - 2-е изд., доп. СПбГТУ, 2000, 503 с.]

    короткозамыкатель
    Служит для создания искусственного короткого замыкания (КЗ) в цепи высокого напряжения. Конструкция его подобна конструкции заземляющего устройства разъединителя, но снабженного быстродействующим приводом.  

    Короткозамыкатели и отделители устанавливаются на стороне высшего напряжения РУ малоответственных потребителей, когда в целях экономии площади и стоимости РУ выключатели предусмотрены только на стороне низшего напряжения.
    [ http://relay-protection.ru/content/view/46/8/1/1/]

    Тематики

    • аппарат, изделие, устройство...
    • высоковольтный аппарат, оборудование...

    EN

    Русско-английский словарь нормативно-технической терминологии > короткозамыкатель

  • 11 менеджмент непрерывности бизнеса

    1. business continuity management
    2. BCM

     

    менеджмент непрерывности бизнеса
    МНБ

    Полный процесс управления, предусматривающий идентификацию потенциальных угроз и их воздействие на деятельность организации, который создает основу для повышения устойчивости организации к инцидентам и направлен на реализацию эффективных ответных мер против них, что обеспечивает защиту интересов ключевых причастных сторон, репутации организации, ее бренда и деятельности, добавляющей ценность.
    Примечание - Менеджмент непрерывности бизнеса включает в себя управление восстановлением или продолжением деятельности организации в случае нарушений в ее работе, а также общей программой обеспечения непрерывности бизнеса организации путем обучения, практического применения и анализа непрерывности бизнеса, разработкой и актуализацией планов непрерывности бизнеса.
    [ ГОСТ Р 53647.1-2009]

    управление непрерывностью бизнеса
    BCM

    (ITIL Service Design)
    Бизнес-процесс, отвечающий за управление рисками, которые могут серьезно повлиять на бизнес. Управление непрерывностью бизнеса защищает интересы ключевых заинтересованных сторон, репутацию, бренд и виды деятельности, создающие ценность. Процесс включает в себя снижение рисков до приемлемого уровня и планирование способов восстановления бизнес-процессов в случае нарушения бизнеса. Управление непрерывностью бизнеса определяет цели, охват и требования по отношению к управлению непрерывностью ИТ-услуг.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    business continuity management
    BCM

    (ITIL Service Design)
    The business process responsible for managing risks that could seriously affect the business. Business continuity management safeguards the interests of key stakeholders, reputation, brand and value-creating activities. The process involves reducing risks to an acceptable level and planning for the recovery of business processes should a disruption to the business occur. Business continuity management sets the objectives, scope and requirements for IT service continuity management.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    EN

    2.4 менеджмент непрерывности бизнеса (business continuity management; BCM); МНБ: Полный процесс управления, предусматривающий идентификацию потенциальных угроз и их воздействие на деятельность организации, который создает основу для повышения устойчивости организации к инцидентам и направлен на реализацию эффективных ответных мер против них, что обеспечивает защиту интересов ключевых причастных сторон, репутации организации, ее бренда и деятельности, добавляющей ценность.

    Примечание - Менеджмент непрерывности бизнеса включает в себя управление восстановлением или продолжением деятельности организации в случае нарушений в ее работе, а также общей программой обеспечения непрерывности бизнеса организации путем обучения, практического применения и анализа непрерывности бизнеса, направленных на осуществление и актуализацию планов непрерывности бизнеса.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > менеджмент непрерывности бизнеса

  • 12 сетевая служба OS/2 LAN manager

    1. OS/2 LAN manager

     

    сетевая служба OS/2 LAN manager
    Реализована в аппаратно-защищенной памяти ПЭВМ, что обеспечивает реализацию серверов, совмещенных с функциями рабочих станций на одной ПЭВМ. Включает в себя набор функций администратора сети и позволяет управлять сетевыми серверами с любой ПЭВМ сети, используя встроенную службу и протокол виртуального сетевого терминала. Служба обеспечивает совместимость снизу вверх для приложений, рассчитанных на средства MS-Net, NETBIOS. Служба может функционировать, используя несколько основных коммуникационных протоколов: ISO, TCP/IP, XNS, что дает возможность построения интерсетей на базе операционной системы OS/2.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    • OS/2 LAN manager

    Русско-английский словарь нормативно-технической терминологии > сетевая служба OS/2 LAN manager

  • 13 интерфейс RS-485

    1. RS-485

     

    интерфейс RS-485
    Промышленный стандарт для полудуплексной передачи данных. Позволяет объединять в сеть протяженностью 1200 м до 32 абонентов.
    [ http://www.morepc.ru/dict/]

    Интерфейс RS-485 - широко распространенный высокоскоростной и помехоустойчивый промышленный последовательный интерфейс передачи данных. Практически все современные компьютеры в промышленном исполнении, большинство интеллектуальных датчиков и исполнительных устройств, программируемые логические контроллеры наряду с традиционным интерфейсом RS-232 содержат в своем составе ту или иную реализацию интерфейса RS-485.
    Интерфейс RS-485 основан на стандарте EIA RS-422/RS-485.

    К сожалению, полноценного эквивалентного российского стандарта не существует, поэтому в данном разделе предлагаются некоторые рекомендации по применению интерфейса RS-485.

    Традиционный интерфейс RS-232 в промышленной автоматизации применяется достаточно редко. Сигналы этого интерфейса передаются перепадами напряжения величиной (3...15) В, поэтому длина линии связи RS-232, как правило, ограничена расстоянием в несколько метров из-за низкой помехоустойчивости. Интерфейс RS-232 имеется в каждом PC–совместимом компьютере, где используется в основном для подключения манипулятора типа “мышь”, модема, и реже – для передачи данных на небольшое расстояние из одного компьютера в другой. Передача производится последовательно, пословно, каждое слово длиной (5...8) бит предваряют стартовым битом
    и заканчивают необязательным битом четности и стоп-битами.
    Интерфейс RS-232 принципиально не позволяет создавать сети, так как соединяет только 2 устройства (так называемое соединение “точка - точка”).

    5151

    Сигналы интерфейса RS-485 передаются дифференциальными перепадами напряжения величиной (0,2...8) В, что обеспечивает высокую помехоустойчивость и общую длину линии связи до 1 км (и более с использованием специальных устройств – повторителей). Кроме того, интерфейс RS-485 позволяет создавать сети путем параллельного подключения многих устройств к одной физической линии (так называемая “мультиплексная шина”).
    В обычном PC-совместимом персональном компьютере (не промышленного исполнения) этот интерфейс отсутствует, поэтому необходим специальный адаптер - преобразователь интерфейса RS-485/232.

    5152
    Наша компания рекомендует использовать полностью автоматические преобразователи интерфейса, не требующие сигнала управления передатчиком. Такие преобразователи, как правило, бывают двух видов:

    • преобразователи, требующие жесткого указания скорости обмена и длины передаваемого слова (с учетом стартовых, стоповых бит и бита четности) для расчета времени окончания передачи: например, преобразователь ADAM-4520 производства компании Advantech. Все параметры задаются переключателями в самом преобразователе, причем для задания этих параметров корпус преобразователя необходимо разобрать;
    • преобразователи на основе технологий “Self Tuner” и им подобных, не требующие никаких указаний вообще, и, соответственно, не имеющие никаких органов управления: например, преобразователь I-7520 производства компании ICP DAS. Данный преобразователь предпочтительнее для использования в сетях с приборами МЕТАКОН.


    В автоматических преобразователях выходы интерфейса RS-485 обычно имеют маркировку “DATA+” и “DATA-“. В I-7520 и ADAM-4520 вывод “DATA+” функционально эквивалентен выводу “A” регулятора МЕТАКОН, вывод “DATA-“ - выводу “B”.

    Устройства, подключаемые к интерфейсу RS-485, характеризуются важным параметром по входу приемопередатчика: “единица нагрузки” (“Unit Load” - UL). По стандарту в сети допускается использование до 32 единиц нагрузки, т.е. до 32 устройств, каждое из которых нагружает линию в 1 UL. В настоящее время существуют микросхемы приемопередатчиков с характеристикой менее 1 UL, например - 0,25 UL. В этом случае количество физи
    чески подключенных к линии устройств можно увеличить, но суммарное количество UL в одной линии не должно превышать 32.

    В качестве линии связи используется экранированная витая пара с волновым сопротивлением ≈120 Ом. Для защиты от помех экран (оплетка) витой пары заземляется в любой точке, но только один раз: это исключает протекание больших токов по экрану из-за неравенства потенциалов “земли”. Выбор точки, в которой следует заземлять кабель, не регламентируется стандартом, но, как правило, экран линии связи заземляют на одном из ее концов.

    5153
    Устройства к сети RS-485 подключаются последовательно, с соблюдением полярности контактов A и B:

    5154
    Как видно из рисунка, длинные ответвления (шлейфы) от магистрали до периферийных устройств не допускаются. Стандарт исходит из предположения, что длина шлейфа равна нулю, но на практике этого достичь невозможно (небольшой шлейф всегда имеется внутри любого периферийного устройства: от клеммы
    до микросхемы приемопередатчика).

    Качество витой пары оказывает большое влияние на дальность связи и максимальную скорость обмена в линии. Существуют специальные методики расчета допустимых скоростей обмена и максимальной длины линии связи, основанные на паспортных параметрах кабеля (волновое сопротивление, погонная емкость, активное сопротивление) и микросхем приемопередатчиков (допустимые искажения фронта сигнала). Но на относительно низких скоростях обмена (до 19200 бит/с) основное влияние на допустимую длину линии связи оказывает активное сопротивление кабеля. Опытным путем установлено, что на расстояниях до 600 м допускается использовать кабель с медной жилой сечением 0,35 мм (например, кабель КММ 2х0,35), на большие расстояния сечение кабеля необходимо пропорционально увеличить. Этот эмпирический результат хорошо согласуется с результатами, полученными расчетными методами.

    Даже для скоростей обмена порядка 19200 бит/с кабель уже можно считать длинной линией, а любая длинная линия для исключения помех от отраженного сигнала должна быть согласована на концах. Для согласования используются резисторы
    сопротивлением 120 Ом (точнее, с сопротивлением, равным волновому сопротивлению кабеля, но, как правило, используемые витые пары имеют волновое сопротивление около 120 Ом и точно подбирать резистор нет необходимости) и мощностью не менее 0,25 Вт – так называемый “терминатор”. Терминаторы устанавливаются на обоих концах линии связи, между контактами A и B витой пары.
    В сетях RS-485 часто наблюдается состояние, когда все подключенные к сети устройства находятся в пассивном состоянии, т.е. в сети отсутствует передача и все приемопередатчики “слушают” сеть. В этом случае приемопередатчики не могут корректно распознать никакого устойчивого логического состояния в линии, а непосредственно после передачи все приемопередатчики распознают в линии состояние, соответствующее последнему переданному биту, что эквивалентно помехе в линии связи. На эту проблему не так часто обращают внимания, борясь с ее последствиями программными методами, но тем не менее решить ее аппаратно несложно. Достаточно с помощью специальных цепей смещения создать в линии потенциал, эквивалентный состоянию отсутствия передачи (так называемое состояние “MARK”: передатчик включен, но передача не ведется). Цепи смещения и терминатор реализованы в преобразователе I-7520. Для корректной работы цепей смещения необходимо наличие двух терминаторов в линии связи.

    В сети RS-485 возможна конфликтная ситуация, когда 2 и более устройства начинают передачу одновременно. Это происходит в следующих случаях:
    • в момент включения питания из-за переходных процессов устройства кратковременно могут находится в режиме передачи;
    • одно или более из устройств неисправно;
    • некорректно используется так называемый “мульти-мастерный” протокол, когда инициаторами обмена могут быть несколько устройств.
    В первых двух случаях быстро устранить конфликт невозможно, что теоретически может привести к перегреву и выходу из строя приемопередатчиков RS-485. К счастью, такая ситуация предусмотрена стандартом и дополнительная защита приемопередатчика обычно не требуется. В последнем случае необходимо предусмотреть программное разделение канала между устройствами-инициаторами обмена, так как в любом случае для нормального функционирования линия связи может одновременно предоставляться только одному передатчику.

    [ http://www.metodichka-contravt.ru/?id=3937]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интерфейс RS-485

  • 14 термомеханическая обработка

    1. thermomechanical treatment
    2. thermomechanical forming

     

    термомеханическая обработка
    ТМО

    Совокупность операций обработки сталей и сплавов давлением и термической обработки, отличающаяся тем, что повышающаяся в результатете пластической деформации плотность дефектов кристаллической решетки в той или иной форме наследуется структурой, формирующейся при последующей термической обработке. Процессы обработки давлением и термической обработки при ТМО могут быть совмещены в одной технологической операции и разделены во времени. ТМО сталей, как эффективный способ повышения их прочности, начали активно исследовать в 1950-х гг. В настоящее время применительно к сталям (преимущественно легированным) промышленное использование находят 4 способа ТМО, разнящиеся температурами деформирования аустенита и условиями последующего охлаждения:
    - низкотемпературная механическая обработка (НТМО), или «аусформинг» по зарубежной терминологии, которая состоит из деформирования переохлажденного аустенита в интервале температур его повышенной устойчивости (ниже критических точек А} и /4,), закалки и низкого отпуска;
    - высокотемпературная термомеханическая обработка (ВТМО), когда аустенит деформируют в области его термодинамической стабильности (выше критических точек и температуры рекристаллизации), затем подвергают закалке с отпуском;
    - высокотемпературная термомеханическая обработка с диффузионным (перлитным) распадом (ВТМизО) или «изоморфинг» по зарубежной терминологии, когда сталь после аустенитизации подстуживают до температуры перлитного превращения и деформируют во время этого превращения;
    - низкокотемпературная термомеханическая обработка с деформацией переохлажденного аустенита при температуре бейнитного превращения (НТМизО).
    НТМО и НТМизО применимы только для легированных сталей с повышенной устойчивостью переохлажденного аустенита и требуют для деформирования мощного оборудования, что ограничивает их промышленное использование.
    НТМО конструкционных легированных сталей позволяет повысить их предел текучести до 2,8-3,0 ГПа при относительном удлинении ~ 6 %. Наилучший комплекс механических свойств стали после ВТМО достигается, когда мартенсит образуется из деформированного аустенита с хорошо развитой полигонизованной структурой. После ВТМО предел текучести низко- и среднелегированных конструкционных сталей достигает 1,9—2,2 ГПа при более высоких показателях пластичности и вязкости по сравнению с НТМО. ВТМизО и НТМизО сопровождаются общим диспергированием структуры перлита и бейнита соответственно, что обеспечивает повышение не только прочностных свойств, но и показателей вязкости разрушения.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    EN

    3.3.2 термомеханическая обработка (thermomechanical forming): Обработка, при которой заключительная деформация осуществляется в определенном температурном диапазоне, что приводит к свойствам материала с заданными параметрами, которые невозможно достигнуть или повторить только при одной термообработке. Последующий нагрев выше температуры 580 °С может понизить значение прочности.

    Буквенное обозначение данного условия поставки - М.

    Примечание 1 - Термомеханическая обработка, которая соответствует условию поставки М, может включать в себя процессы с возрастающей скоростью охлаждения и отпуском (или без отпуска), в том числе самоотпуск, но исключая непосредственную закалку и закалку с отпуском.

    Примечание 2 - При снижении содержания углерода и углеродного эквивалента материала, соответствующего условиям поставки М, улучшается свариваемость.

    Источник: ГОСТ Р ИСО 3183-2-2007: Трубы стальные для трубопроводов. Технические условия. Часть 2. Требования к трубам класса В оригинал документа

    3.3.2 термомеханическая обработка (thermomechanical forming): Процесс деформирования, при котором заключительная фаза деформации осуществляется в определенном температурном диапазоне, что приводит к свойствам материала с заданными параметрами, которые невозможно достигнуть или повторить только при одной термообработке.

    Примечание 1 - Последующее нагревание выше 580 °C может понизить значения прочности.

    Примечание 2 - Буквенное обозначение данного условия поставки - М.

    Примечание 3 - Термомеханическая обработка, которая соответствует условию поставки М, может включать в себя процессы с возрастающей скоростью охлаждения и отпуском (или без отпуска), в том числе самоотпуск, но исключая непосредственную закалку и закалку с отпуском.

    Источник: ГОСТ Р ИСО 3183-3-2007: Трубы стальные для трубопроводов. Технические условия. Часть 3. Требования к трубам класса С оригинал документа

    Русско-английский словарь нормативно-технической терминологии > термомеханическая обработка

  • 15 лецитин

    [греч. lekitosяичный желток и лат. - in(e) — суффикс, обозначающий "подобный"]
    гигроскопическое воскоподобное вещество, представитель группы фосфолипидов (см. фосфолипиды), который является важной составной частью клеточных мембран и участвует в процессах метаболизма жиров в печени (напр., фосфатидилхолин). Л. содержится во многих пищевых продуктах, напр., в бобах сои, зерновых культурах, пивных дрожжах, рыбе, в яичном желтке и др.; присутствует в женском молоке, что обеспечивает нормальное развитие нервной системы младенцев. Л. используется в качестве биологически активной добавки, поскольку он ускоряет окислительные процессы, обеспечивает нормальный обмен жиров, улучшает работу мозга и сердечнососудистой системы, способствует усвоению витаминов А, D, Е и К; в косметике Л. добавляется в средства по уходу за кожей как эмульгатор. Термин "Л." предложен М. Гобли в 1850 г.

    Толковый биотехнологический словарь. Русско-английский. > лецитин

  • 16 петлевой биореактор

    [греч. bios — жизнь, лат. re- — приставка, обозначающая повторность действия, и actio — действие]
    ферментер (см. биореактор), в котором материал циркулирует между большим и меньшим по размерам сосудами или по петлям труб. Циркуляция помогает смешивать материалы и обеспечивает хорошее для ферментации распределение газов в жидкости. П.б. используется, в частности, для фотосинтетической ферментации, при которой фотосинтезирующие организмы пропускаются через систему небольших прозрачных труб, что обеспечивает им оптимальный доступ к свету.

    Толковый биотехнологический словарь. Русско-английский. > петлевой биореактор

  • 17 А-закон

    1. A-Iaw

     

    А-закон
    Логарифмический закон сжатия динамического диапазона речевого сигнала в ADPCM и РСМ кодеках, применяемых в Европе. Обеспечивает постоянное отношение сигнал/шум при восстановлении сигналов малого уровня.
    [Л.М.Невдяев. Мобильная связь 3-го поколения. Москва, 2000 г.]

    А-закон
    Закон сжатия динамического диапазона речевого сигнала, применяемый в РСМ и ADPCM речевых кодерах. Основан на использовании разных алгоритмов сжатия: логарифмического - для сигналов с большими амплитудами и линейного - с малыми, что обеспечивает постоянство отношения сигнал/шум при восстановлении сигналов малого уровня (рис. А-5). Ср. µ-law.
    5162
    Рис. А-5. Логарифмические характеристики А-закона сжатия динамического диапазона (А=1 - без командирования)
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > А-закон

  • 18 импотенция

    Генитальная дисфункция у мужчин, обычно — неспособность достичь эрекции или поддерживать ее на достаточном для совершения полового акта уровне. Хотя импотенция может иметь физиологическую основу — например, диабетическую невропатию, — в большинстве случаев она детерминирована психологически. Преждевременная эякуляция, задержка эякуляции и относительный недостаток удовольствия несмотря на оргазм (психическая импотенция) предполагают стоящие за ними сходные психические проблемы. Один и тот же индивид может страдать одной либо всеми перечисленными дисфункциями. Мысли, установки или действия, служащие отрицанию или минимизации того, что делает пациент, могут быть использованы в защитном плане с достаточно хорошим результатом. Все, что обеспечивает эмоциональную или физическую дистанцию, может дать возможность некоторой потенции посредством нейтрализации опасности близости и совершения акта, что часто имеет эдипово значение. В некоторых случаях имеет значение поза при половом акте; например, потенция возможна только при половом акте в позиции сзади. В некоторых случаях потенция возможна при сношениях с так называемыми "дурными" или "падшими" женщинами, но невозможна в отношениях с "хорошей" женщиной, любимой и уважаемой, к которой, однако, невозможно относиться сексуально, поскольку она репрезентирует непорочную мать детства. Женщины других стран, рас и вероисповеданий могут не ассоциироваться с эдиповым значением акта.
    Контроль над эякуляцией связан с сексуальной и эмоциональной зрелостью индивида и отражает его внимание к потребностям и состоянию сексуального партнера. У мужчин с преждевременной эякуляцией, как правило, можно выявить серьезную психопатологию в их отношениях с женщинами; часто они бессознательно относятся к ним как к несущим опасность, "грязным" или "падшим". Решающее значение имеют тревога и враждебность: мужчина вполне потентен при хороших отношениях с женщиной, но импотентен при появлении враждебности. Преходящие состояния импотенции могут быть связаны с алкоголем, угрожающей ситуацией или иными поглощающими индивида проблемами.
    Серьезная психопатология может затрагивать лишь некоторые функции, сохраняя другие относительно неповрежденными. Каким будет симптом — психическим или сексуальным (фобия и обсессия либо импотенция или преждевременная эякуляция), определяется взаимодействием самых разных факторов. Черты характера могут несексуальным образом выражать смысл импотенции; например, социальная тревожность или нерешительность отражают тот же страх повреждения или чувство стыда. Или же индивид может быть ограничен в возможности испытывать тепло и сочувствие к другим. Часто связаны с импотенцией социальный конформизм, исключительная воспитанность, интроверсия, трудности самоутверждения. Импотент может быть застенчив, тревожен, пассивен или зависим вблизи женщин, или же как реакция на эти характеристики у него могут развиться донжуанство, стремление к поверхностным кратковременным связям. Он может избегать открытых столкновений с мужчинами или же предпочитать интеллектуальное соперничество физическому, либо эти установки могут перекрываться сверхкомпенсаторной конкуренцией.
    В детстве таких пациентов часто присутствует балующая, подавляющая, порождающая чувство вины или сексуально провоцирующая мать; отец же — безразличный, отвергающий, отсутствующий или склонный к постоянным обвинениям, что препятствует установлению настоящей взаимной привязанности между отцом и сыном. Близость к матери и отдаленность по отношению к отцу усиливают эдиповы желания и страхи, от которых индивид защищается с помощью вытеснения, подавления и характерологического ограничения. В юности сильное сексуальное влечение может преодолевать подавление, вызывающее импотенцию в среднем возрасте.
    \
    Лит.: [5, 154, 425, 639]

    Словарь психоаналитических терминов и понятий > импотенция

  • 19 идеализация

    Нереалистичное завышение личностных атрибутов объекта. Индивиду, превозносимому до экзальтированного признания его совершенством, могут приписываться противоречивые качества, соотносимые с либидинозным или агрессивным катексисом. Идеализация сопровождается чувствами восхищения, благоговения, почитания, обожествления, очарования. Впервые этот процесс описан Фрейдом в связи с феноменом влюбленности. Идеализироваться могут как объект, так и сам индивид.
    Фрейд постулировал состояние инфантильного нарциссизма, включающего в себя чувство всемогущества, связанное со стадией первичной идентификации или единения с матерью. Согласно его теории, это состояние исчезает, когда ребенок осознает свою обособленность, одиночество и беспомощность; тогда исходное чувство всемогущества приписывается родителям посредством идеализации. Когда родители не оправдывают ожиданий, фрустрация ребенка приводит к отвлечению некоторого количества идеализирующего либидо на субъекта, что обеспечивает энергию для идентификации и обретения структур Я, контролирующих влечения и регулирующих напряжение в течение доэдиповой стадии. На протяжении этого в сущности анаклитического периода, когда отношения основаны на потребности в удовлетворяющем объекте, преувеличение значимости родителей соответствует нуждам ребенка, а родитель, исполняющий все желания, является отражением детских переживаний удовлетворения. Идеализация изменяется в связи с чередованием удовлетворенности, фрустрации, гнева. Позже, когда родители становятся значимыми независимо от потребности (константность объекта), идеализация все более переходит "на службу" защиты. Мать, которая в идеале привлекательна и не оказывает сопротивления, может парадоксальным образом стать также идеально девственной и неприступной. Отец, преувеличенно могущественный и внушающий страх, может одновременно восприниматься как гуманный и справедливый.
    В фаллически-эдиповой стадии определенные аспекты идеализированных образов родителей интернализируются в виде Сверх-Я, действующего так, как это делали родители, в плане установления норм, выдвижения запретов и осуществления наказаний. Фрейд изначально описывал Сверх-Я антропоморфически, как Я-идеал. В современном употреблении выделяются две составляющие Сверх-Я. Я-идеал основывается на нарциссически гипертрофированных элементах взаимодействия ребенка с родителями и соотносится с ценностями, стремлениями и притязаниями. Несоответствие этим стандартам, как правило, ведет к появлению чувства стыда. Идеализированные агрессивные и запрещающие фигуры интернализируются в части Сверх-Я, соответствующей совести, которая инициирует аффект вины и наказания за проступки. Интернализация этих идеализированных аспектов родительских образов способствует психической экономии; она защищает личность от нарциссической регрессии в период наибольшей ранимости ребенка (в фаллически-эдиповой фазе), сдерживая направленные на объект влечения и таким образом усиливая контроль Я над влечениями.
    Интернализация сопровождается постоянной потребностью в идеализации и возвеличении родителей (особенно родителя одного с ребенком пола) для установления связи с могущественной фигурой. При фрустрации этой потребности — утрате, безответности, депривации или разочаровании — базисное структурирование Я-идеала и Сверх-Я может быть затруднено. Даже после интернализации разочарование в родителях может свести на нет установившуюся идеализацию и инициировать новый поиск идеального внешнего объекта, чтобы поддержать то, что внутренне ослаблено.
    Идеализация продолжается на протяжении жизни. Особенно она заметна в подростковый период. Во время психоаналитического лечения пациент нередко идеализирует аналитика. Если для аналитиков, работающих в рамках традиционного подхода, понимание истоков такого отношения представляется обязательным для правильного проведения анализа, то теоретики, разрабатывающие психологию Самости, считают, что идеализация аналитика необходима для замещения функций части психического аппарата, которые недостаточно прочно закрепились в детском или младенческом возрасте. По их мнению, идеализацию следует поддерживать до тех пор, пока она служит функции отсроченной интернализации.
    \
    Лит.: [80, 303, 451, 490, 512, 716]

    Словарь психоаналитических терминов и понятий > идеализация

  • 20 линия проводной связи

    1. drahtgebundene Nachrichtenleitung

     

    линия проводной связи
    Воздушная или кабельная электрическая линия связи.
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    проводные линии связи

    В вычислительных сетях проводные линии связи представлены коаксиальными кабелями и витыми парами проводов.
    Используются коаксиальные кабели: "толстый" диаметром 12,5 мм и "тонкий" диаметром 6,25 мм. "Толстый" кабель имеет меньшее затухание, лучшую помехозащищенность, что обеспечивает возможность работы на больших расстояниях, но он плохо гнется, что затрудняет прокладку соединений в помещениях, и дороже "тонкого".
    Существуют экранированные (STP - Shielded Twist Pair) и неэкранированные (UTP - Unshielded Twist Pair) витые пары проводов. Экранированные пары сравнительно дороги. Неэкранированные витые пары имеют несколько категорий (типов). Обычный телефонный кабель - пара категории 1. Пара категории 2 может использоваться в сетях с пропускной способностью до 4 Мбит/с. Для сетей Ethernet (точнее, для ее варианта с названием 10Base-T) разработана пара категории 3, а для сетей Token Ring - пара категории 4. Наиболее совершенной является витая пара категории 5, которая применима при частотах до 100 МГц. В паре категории 5 проводник представлен медными жилами диаметром 0,51 мм, навитыми по определенной технологии и заключенными в термостойкую изолирующую оболочку. В высокоскоростных ЛВС на UTP длины соединений обычно не превышают 100 м. Затухание на 100 МГц и при длине 100 м составляет около 24 дБ, при 10 МГЦ и 100 м - около 7 дБ.
    Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к земле), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.
    [И.П. Норенков, В.А. Трудоношин. Телекоммуникационные технологии и сети. МГТУ им. Н.Э.Баумана. Москва 1999]


    Проводные линии связи

    Проводные (воздушные) линии связи используются для передачи телефонных и телеграфных сигналом, а также для передачи компьютерных данных. Эти линии связи применяются в качестве магистральных линий связи.

    По проводным линиям связи могут быть организованы аналоговые и цифровые каналы передачи данных. Скорость передачи по проводным линиям "простой старой телефонной линии" (POST - Primitive Old Telephone System) является очень низкой. Кроме того, к недостаткам этих линий относятся низкая помехозащищенность и возможность простого несанкционированного подключения к сети.

    [ http://www.lessons-tva.info/edu/telecom-loc/m1t2_2loc.html]

    Тематики

    • линии, соединения и цепи электросвязи

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > линия проводной связи

См. также в других словарях:

  • ЧТО ТАКОЕ РАСТЕНИЕ —         Общая площадь планеты Земля составляет 510 млн. км2. На долю суши приходится 149 млн. км2, Мировой океан занимает 361 млн. км2. И суша и океан заселены растениями и животными. Разнообразие и тех и других очень велико. Ныне установлено… …   Биологическая энциклопедия

  • ЧТО ТАКОЕ ФИЛОСОФИЯ? — ’ЧТО ТАКОЕ ФИЛОСОФИЯ?’ (‘Qu est ce que la philosophie?’, Les Editions de Minuit, 1991) книга Делеза и Гваттари. По мысли авторов, обозначенной во Введении, ‘что такое философия’ это такой вопрос, который ‘задают, скрывая беспокойство, ближе к… …   История Философии: Энциклопедия

  • ЧТО ТАКОЕ ФИЛОСОФИЯ? — ( Qu est ce que la philosophie? , Les Editions de Minuit, 1991) книга Делеза и Гваттари. По мысли авторов, обозначенной во Введении, что такое философия это такой вопрос, который задают, скрывая беспокойство, ближе к полуночи, когда больше… …   История Философии: Энциклопедия

  • Глава 5. О СОСТАВЕ БЛЮД МОЕГО МЕНЮ И КОЕ-ЧТО ОБ ЭКЗОТИЧЕСКИХ БЛЮДАХ —         Из подробного обзора пищевого состава моего меню достаточно ясно видно, что практически нет таких пищевых продуктов, которые я бы сознательно дискриминировал и исключал бы полностью из своего рациона.         Даже какао, шоколад, яйца,… …   Большая энциклопедия кулинарного искусства

  • система — 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… …   Словарь-справочник терминов нормативно-технической документации

  • Инфраструктура — (Infrastructure) Инфраструктура это комплекс взаимосвязанных обслуживающих структур или объектов Транспортная, социальная, дорожная, рыночная, инновационная инфраструктуры, их развитие и элементы Содержание >>>>>>>> …   Энциклопедия инвестора

  • БМ «Оплот» — …   Википедия

  • Международные расчёты — (International settlements) Расчёты по международным торговым операциям Основные формы и правовые особенности международных расчётов, системы для их проведения Содержание Содержание Раздел 1. Основные понятия . 1Определения описываемого предмета… …   Энциклопедия инвестора

  • Фьючерс — (Futures) Фьючерс это срочный биржевой контракт на покупку рыночного актива Что такое фьючерс, фьючерсный контракт, рынок фьючерсов, торговля фьючерсами, стратегия фьючерс, виды ценных бумаг на фьючерсном рынке, хеджирование рисков с помощью… …   Энциклопедия инвестора

  • Exxon Mobil — (Эксон Мобил) Компания Exxon Mobil самая крупная частная нефтяная компания в мире Деятельность и продукция компании Эксон Мобил, масла и антифризы компании, а так же нефтепродукты, официальный сайт компании Exxon Mobil Содержание >>>>>>>> …   Энциклопедия инвестора

  • Saxo Bank — (Саксо банк) Saxo Bank это брокер на финансовых рынках Саксо банк это ивестиционная компания, датский онлайн банк, плохие и не правдоподобно положительные отзывы о Saxo Bank Содержание >>>>>>>>> …   Энциклопедия инвестора

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»